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Abstract: This paper presents a robustness of the proposed generalized minimum variance algorithm. The main idea is to 
use artificial neural network for generalization of the GMV. This will give a neural network-based control method wich can 
be applied to civil engineering structures. The neural network learns the control task from an already existing controller, 
which is the generalized minimum variance (GMV) controller. The objective is to take advantage of the generalization 
capabilities and the nonlinear behavior of neural networks in order to overcome the limitations of the existing controller and 
even to improve its performances. Simulation results demonstrate the robustness of this algorithm and its capability to 
compensate the structural parameter variations and seismic ground motion. 
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1. Introduction 

Structural control is an expanding field of study since the 
increasing need to save human being lives and reduce 
structural damage [18]. For this purpose, many active con-
trol techniques have been investigated and applied to 
structural systems in order to reduce their dynamic response 
under earthquake excitation. But most of these techniques 
suffer one or more of the following disadvantages: (1) the 
control law is usually designed assuming a linear or a li-
nearized behavior around a desired state of the structure 
being controlled, (2) structural parameters are supposed to 
remain constant along all the control time history, i.e., the 
structure suffers no damage or deterioration, (3) the control 
is designed for a specific type of earthquake excitation. If the 
above mentioned statements are verified, control efficiency 
will be ensured in most cases. However, in practical situa-
tions structures may exhibit a nonlinear behavior caused 
either by large displacements or material nonlinearity and 
damage. In other hand, structural model uncertainties and 
parameter variations, especially under severe earthquakes, 
are very probably to occur. These practical considerations 
will limit the effectiveness of the control system and per-
formances of the control technique will be severely affected. 

Faced with this kind of problems, civil engineers have 
turned to a more powerful tool which can perform control 

actions while compensating for unpredictable environmental 
changes. Neural networks have demonstrated their abilities 
to accomplish this task. They become a challenging alter-
native to solve specific structural problems, handling their 
attractive features such as nonlinearity, parallel processing, 
learning and generalization capabilities. The ability of 
neural networks to approximate arbitrary nonlinear map-
pings makes them of great deal in control of nonlinear 
systems. 

 In the context of structural control, neural networks have 
been used since the late 1980s for identification and control 
of structures [13]. Chassiakos et al [7] used neural networks 
to identify multi-degree-of-freedom systems with unknown 
parameters under earthquake excitation. In [11] a multilayer 
feedforward neural network is used and trained by Back-
propagation to emulate seismic response of a two-story 
building. An indirect predictive learning control scheme for 
control of large space structures was investigated in [23]. 
Venini and Wen [21] used a neural network to approximate 
the inverse dynamics of a multi-degree-of-freedom structure. 
The trained network is used to control the structure by a 
single actuator through a hybrid control scheme. In [13] 
Ghaboussi et al presented a linearly trained neurocontroller 
for the control of linear structures when the structural re-
sponse remained within the linearly elastic range. Recently, 
Bani-Hani et al [6] extended the method of Ghaboussi et al 
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to nonlinear structural control problems. They demonstrated 
that the nonlinearly trained neuro-controller was able to 
reduce the structural damage more than the linearly trained 
neuro-controller, but globally the two controllers have 
comparable performances. 

In [4] the authors are interested to minimize the norm of 
the nominal control sensivity transfer function in the condi-
tion of non minimum phase system. The stochastic poly-
nomial C is chosen by the authors and equal to one in the 
case study of the paper. Also in an other paper [5] the con-
troller is calculated using the variance of the output with and 
without tracking polynomial. The chosen parameter con-
troller is done according to the norm of the output in optimal 
and suboptimal cases. Whereas Grimble [17] develop the 
non linear generalized minimum variance for MIMO sys-
tems in general case without specification on the parameter 
variations. Also nonlinear smith predictor is used for im-
plementation in the case of open loop stable systems. The 
authors in [19] present the  generalized  minimum variance 
for noisy free systems and STR algorithm for AR  systems. 
The polynomial C is then chosen by the authors. In our 
approach we are interested to maintain the stochastic beha-
vior of the system charatirized by soil structure interaction. 
The closed loop polynomial is the same as that one of the 
exogen input to insure the optimal parameter of the con-
troller. By using the neural network, we introduce the sto-
chastic behavior in the non linear new model. This one can 
occurs in the generalized case by operating in the non 
training data. 

In this paper, we first investigate the so-called generalized 
Minimum Variance (GMV) algorithm for buildings under 
earthquake excitation. The GMV algorithm attempts, by 
using a certain model of the system to be controlled and its 
perturbations, to minimize a generalized cost function in-
cluding output variance and control effort. The GMV algo-
rithm has been widely studied in literature [8,9,14] and has 
demonstrated good tracking and regulation performances. 
But these performances, as we will see, are closely related 
the knowledge of the ARMAX (Auto-Regressive Moving 
Average eXogen) model of the system to be controlled since 
the control strategy is derived in the base of this model. 
Therefore if the ARMAX model changes by changing the 
seismic excitation model or by structural parameter varia-
tions, control performances may be questionable. In the 
classical control theory we can use the adaptive approach 
witch need more time calculation and fast sampling time. 

To overcome this problem, we will investigate, in this 
approach, the use of a neural network that learns to control a 
single-degree-of-freedom (SDOF) structural building from 
the GMV controller. The neural network controller will 
acquire control skills from the GMV controller in one hand, 
Iin the other hand it will use the generalization capabilities 
of neural networks to overcome the model-based restrictions 
of the GMV control technique mentioned above. We have 
tested the robustness of the resulted algorithm against pa-
rameter variation of the model. It has also been showed that 
the seismic exciataion has been taken in charge by the pro-

posed algorithm with out any change in the parameter of the 
exogen model. 

The approach is to avoid the development of robust con-
troller with complicated calculation. The idea is to use 
neural ANN to have a profit of the generalization behviour 
and parameter variation. We will see that the presented 
controller can maintain the closed loop performances more 
that the classical GMV. The robustness is inside the ANN 
that gives us more unknow information that we have not 
taken into consideration in the development of the control 
law. But changing the excitation signal, we are changing the 
parameter of the polynomial C which affect the closed loop 
performances. The main result that we are not using an 
adaptive algorithm which take much calculation time against 
our algorithm. 

2. Dynamical Model of the Structure 

In this section, we are interested in formulating the dy-
namical equations of motion of a single-degree-of-freedom 
structure under seismic excitation. where mechanical actu-
ators are active tendons. In order to establish the dynamical 
model, the following assumptions are considered [10]: 

1. the structure is supposed to be a lumped mass m in 
the girder 

2. the two vertical axes are weightless and inextensible 
in the vertical direction with spring constant k/2 
each. 

After calculation we can Easily derive the dynamical 
model of the structure[13]: 

)()()()()( txmtutkxtxctxm g
ɺɺɺɺɺ −=++             (1) 

where u(t) is the external control force. 
m is the structural mass; 
c is the internal viscous damping of the structure; 
k is the elastic stiffness; 
x(t) is the relative displacement; 
xt(t) is the absolute displacement defined as 
xg(t) is the ground motion; 

)(txg
ɺɺ  represents the ground acceleration. 

This model will be used for testing the proposed algo-
rithm. The parameter of this one is presented in the next 
sections of this paper. 

We can see that the variation of the mass affect directly 
the model of the system whereas the seismic excitation do 
not. 

3. ARMAX Model of the Structure 

To formulate an optimal control problem, it is necessary 
to specify the process dynamics and its environment. It is 
assumed that the influence of the environment on the 
process can be characterized by disturbances, which are 
stochastic process. As the system is linear, we can use the 
principle of superposition and represent all disturbances as a 
single disturbance acting on the output. It is assumed that 
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this disturbance is a stationary Gaussian process with ra-
tional spectral density. 

The calculation of the ARMAX model of the structure 
under seismic excitation can be done using equation of 
motion (1). After dividing this equation by m and introduc-
ing the notations 

m

k=2
0ω  natural frequency 

02 ω
ξ

m

c=  damping ratio 

Equation (1) becomes: 

( ) ( ) ( ) ( ) ( )txtu
m

txtxtx gɺɺɺɺɺ −=++ 1
2 2

00 ωξω        (2) 

Now applying Laplace transform to equation (2), we ob-
tain 
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where ( )sX , ( )sX g
ɺɺ  and ( )sU  are the Laplace transform 

of ( )tx , ( )txg
ɺɺ  and ( )tu  respectively; s is the Laplace oper-

ator. Figure 1 shows the bloc diagram of the structural model 

 

Figure 1. Bloc diagram of the structural model. 

The ARMAX model of the structure is obtained by dis-
cretization of equation (3). We obtain [15,12]: 
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The ground acceleration is described by the Kanai-Tajimi 
model, i.e 

( ) ( )sEsGsX g )(1=ɺɺ                 (5) 
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E(s) is the Laplace transform of white noise. 
Discretization of equation (5) gives the discrete ARMAX 

model of the structure under the Kanai-Tajimi ground ac-
celeration. We can see that the parameter of the polynomial 
C depend directly on those of the structure. The main result 
here is the excitation signal in the model. So when we 
change the seismic ground motion, the final model will 
change as parameter variation. This affects directly the 
parameter of the exogen input represented by the polynomial 
C. 

4. Generalized Minimum Variance 

Controller 

The Generalized Minimum Variance (GMV) algorithm 
was introduced by Clarke [8,9] to control non-minimum 
phase systems. It is an extension of the Minimum Variance 
algorithm [1,2] which, by choosing a certain performance 
criterion, attempts to minimize the variance of the output. 

The ARMAX (Auto-Regressive Moving Average eXogen) 
model of the system is used 

( ) ( ) ( )teqCtuqBqtyqA d )()()( 111 −−−− +=           (6) 

where 

n
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l
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noted A, B and C 
0≥d  is the time delay of the system 

y(t) process output 
u(t) control 
e(t) white noise with zero mean and of variance σ2. 
The polynomial C is stable. 
The performance index to be minimized is 

( ) ( )( ) ( )( )[ ]22 '11 tuQdtwRdtPyEJ w +++−++=     (7) 

where 
E mathematical esperance 

( )1++ dtw  reference signal 

)( 1−qP , )( 1−qRw  and )( 1−′ qQ weighing polynomials with 
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The degrees of P and Rw can be chosen arbitrarily. We 
remark in this criterion that w(t+d+1) is a disposable in-
formation, but y(t+d+1) is not. It is a future information that 
we must predict. After some calculations, we derive the 
GMV control strategy given by [15,16]: 
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Figure. 2. Generalized Minimum Variance Control architecture. 

It is seen from the previous equations that the perfor-
mance of the GMV control is closely related to the accuracy 
of the ARMAX model of the system to be controlled. 
Therefore, if the ARMAX model used to derive the control 
law differs from the true ARMAX model of the system, 
control objectives will not be guaranteed. This can be the 
case in practical situations where structural parameters 
change if the building undergo damage or deterioration. 
Also, if the GMV algorithm is initially designed for a spe-
cific model and magnitude of the seismic excitation, its 
ability to reduce the structural response for a different ex-
citation model is uncertain. 

The calculation of the control depends on the polynomial 
C. This polynomial corresponds to the dynamical model as 
we can see in the Diophantine equation. 

4.1. Closed Loop Analysis 

To evaluate the regulator performances, we have to cal-
culate the closed loop transfer function. From equations 8 
and 6 we obtain  
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The difference between the output and the obtained model 
is a noise defined as 
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Equation (10) becomes 
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In this case, we have evaluated the maximum of the out-
put variance, which is the closed loop performance (in the 
stochastic sense). The closed loop transfer function (be-
tween the output and the reference w(t)) is 

( )
N

wD
BF

P

RP
qF =−1

                (13) 

So the choice of weighing polynomials P and Rw define 
the reference model. The optimal control is achieved by 
choosing the closed loop dynamic as C polynome. 

5. The Neural Network Controller 

The Unlike the conventional control algorithms where the 
control task is formulated explicitly, in the neural net-
work-based structural control methods the neurocontroller 
learns the control task. The neurocontroller acquires the 
knowledge of structural control from a set of training cases 
or an existing controller and stores it in the connection 
weights[23]. 

The aim of this section is to use a neural network that 
replaces the GMV control algorithm. The neural network 
learns control actions from data generated when the GMV 
algorithm is controlling the structural system. By using its 
learning and generalization capabilities the neural network 
will attempt to perform well and to overcome some of the 
restrictions of the GMV algorithm. 

The overall control is implemented in two stages: 
1. Training stage (1): in this stage, the neural network 

learns the function input/output of the GMV con-
troller. When this later controls the structural system, 
training examples are generated. Then a supervised 
learning algorithm is used in order to train the neural 
network. 

2. Control stage (2): after training, the network controls 
the structural system and the GMV controller is 
removed. 
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Figure 3. The neural network-based control. 

5.1. Training Algorithm 

The neural network training method used in this study is 
the well-known Backpropagation algorithm. It is based on 
the minimization of a quadratic cost function of the error 
between the desired output and the neural network output. 
This is done by continuously changing the neural network 
weights in the direction of the steepest descent of the error 
cost function. 

The output of a unit in the output or hidden layer Oj is 
given by the following equation: 

( )
∑=

=

i

ijij

jj

Ownet

netfO

               (14) 

where 
netj is the weighted sum of the outputs of the previous 

layer 
wji is the connection weight between the ith node of the 

previous layer and the jth node of the present layer 
f(.) denotes the activation function of the nodes. In this 

study, we have used the tangent hyperbolic function 
The error function to be minimized at each iteration of the 

Backpropagation algorithm is defined by 

( )∑ −=
k

pkpkp OyE
2

2

1
                (15) 

where 
Opk is the output of the network 
ypk is the desired output 
the index k ranges over all the nodes of the output layer 
the index p denotes the training pattern p from the set of 

training data. 
The weight wji, which could belong to any layer of the 

network, is adjusted so as to minimize Ep, according to the 
following equation 

ji

p

jiji
w

E
ww

∂

∂
−= η                     (16) 

where η is the learning rate. 

5.2. Network Architecture 

In order to implement the control method described above, 

we have used a three-layered feedforward neural network 
consisting of 8 inputs, 10 hidden units and 1 output. Figure 4 
shows the architecture of the neural network. 

 

Figure 4. Neural network architecture. 

The input units represent the ground acceleration at two 
past time steps, the relative displacement at three past time 
steps and the control signal at three past time steps. The 
output unit represents the control to be sent to the actuator. 
The number of past time steps for each variable included in 
the input layer is chosen so as to provide the neural network 
with sufficient amount of information to implement the 
GMV control law and to take into consideration environ-
mental changes. This choice is generally based on intuition 
and trial and error [6]. There are no systematic methods for 
determining these numbers. 

5.3. Generation of Training Data 

The set of training data is generated from the GMV con-
trol of the structural system. The Kanai-Tajimi excitation 
model is used in the derivation of ARMAX model of the 
structure and the Kanai-Tajimi ground acceleration is used 
as an excitation in the base of the structure. 150 examples 
were selected from the 30 s control time history to train the 
network with Backpropagation algorithm. 

We deduce that the training has been done on one sto-
chatic model C. Any change of the stochastic model affect 
directly the regulator parameter  for the classical algorithm. 

6. Mathematical Model of Earthquake 

Ground Motion 

The earthquake ground acceleration is modeled as a un-
iformly modulated non-stationary random process [10,22] 

( ) ( ) ( )txttx sg
ɺɺɺɺ ψ=                     (17) 

where ψ(t) is a deterministic nonnegative envelope func-

tion and ( )txs
ɺɺ  is a stationary random process with zero 

mean and a Kanai-Tajimi power spectral density 
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Where: ξg, ωg are filter parameters and S0 is the constant 
spectral density of the white noise. 

However, it can be shown that the velocity and dis-
placement spectra, which are derived from the acceleration 
spectra that are described by equation (17), have strong 
singularities at zero frequency. These singularities can be 
removed by using high-pass filter, as suggested by 
Clough-Penzien [10]. Using such a second high pass filter, 
the Kanai-Tajimi spectrum is modified as follows to obtain 
the Clough-Penzien spectrum 
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A particular envelope function ψ(t) given in the following 
will be used 
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where t1, t2 and a are parameters that should be selected 
appropriately to reflect the shape and duration of the earth-
quake ground acceleration. 

Numerical values of parameters are [15]: 

t1=3s, t2=13s, a=0.26, ξg=0.65, ωg=19rad/s, ξc=0.6, 
ωc=2rad/s, S0=0.8 10-2m/s. 

The Kanai-Tajimi and Clough-Penzien ground accelera-
tions have been simulated for yhe excitation of the structure. 
According to the parameter of this model we can determine 
the discrete model. So we obtain one valid regulator for the 
chosen structure. 

But using neural network algorithm, we can obtain an in-
finite kind of stochatic regulators from the ANN generali-
zation. 

7. Simulation Results 

In order to demonstrate the efficiency of the neural net-
work-based controller and show its superiority in compari-
son with the GMV controller, a single-degree-of-freedom 
structure with the following structural properties [20] 
m=2921Kg, k=1389kN/m, ξ=0.0124 is used. An active 
tendon controller is installed in the story unit and the angle 

of incline of the tendons with respect to the floor is 25o. Thus, 
the control force vector from the controller is u/cos25o. Thus 
we can suppose that the force is applied at the top of the 
structure and assumed to be activated externally by an 
independent power supply. Figure 5 shows the open re-
sponse for the seismic excitation. 

 

Figure 5. Open loop response for ground accelerations. 

To implement the GMV algorithm we have used a sam-
pling period Ts=0.02s. Ponderation polynomials used in the 
GMV algorithm are: 

PD(q-1)=1, PN(q-1) = 1 - 0.5q-1, Q(q-1)= 10-8 

We have used to train the neural network a learning  
rate η of 0.2 for the first layer and 0.1 for the second layer. 

Weights were arbitrary initialized between –0.5 and 0.5. 
Training took around 2500 cycles to achieve an acceptable 
error. 

The building was subjected to excitations of Kanai-Tajimi 
model and a parameter variation (diminution of the struc-
tural mass m of 20% at t=10s) for purposes of comparison. 
Figures 6 and 7 show the structural response for seismic 
escitation amplitude of 200%. Whereas in figure 8, we show 
that the classical algorithm can not maintain its perfor-
mances. But in figure 9 we see the robustness of the pro-
posed algorithm and the response is stable with the same 
calculated nework without any changes. Table I gives the 
output variance for each case. 

Table 1 Output variance for different cases. 

 
Kanai-Tajimi 

model 

200% of Ka-

nai-Tajimi 
Diminution of m 

No control 3,4016.10-7 1,3606.10-6 2,5232.10-7 

GMV 1,6286.10-10 6,5143.10-10 Divergence 

ANN 1.7129.10-10 7.0974.10-10 1.7705.10-11 
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Figure 6. Classical GMV Structural response to 200% of Kanai-Tajimi 

ground acceleration. 
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Figure 7. NN GMV approach Structural response to 200% of Kanai-Tajimi 

ground acceleration 

  

0  

Figure 8. Classical GMV Structural response to Kanai-Tajimi ground 

acceleration with structural parameter variation. 
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Figure 9. ANN GMV Structural response to Kanai-Tajimi ground accele-

ration with structural parameter variation. 

It is easily seen that the neural controller has good per-
formances comparable to those of the GMV controller. The 
neural controller was able to reduce the structural response 
with only a limited amount of control effort. But the im-
portant result here is that the neural controller could com-
pensate for structural parameter variation whereas the GMV 
controller performances are severely degraded and the 
control showed to be instable in this case. This result shows 
the robustness of the proposed algorithm against this kind of 
variations. 

8. Conclusions 

A neural network-based controller was used in this paper 
to overcome limitations of the classical GMV algorithm. 
Also to ovoid the use of adaptive algorithm which needs 
more stability analysis and more time calculation. Despite 
that the neural network was trained on a specified data 
including only the Kanai-Tajimi earthquake excitation 
model, it was able to generalize to non trained data and 
showed to have good performances with another types of 

seismic excitation models. It has been shown also that the 
neural controller uses its generalization capabilities to 
compensate for structural parameter variation and maintains 
its good performances along all the control time history, 
whereas the GMV control performances become very bad 
since structural parameter variation will modify the AR-
MAX model of the structure. 

As a result, we can say that the neural network acquired 
control skills from the GMV controller, while using its 
intrinsic capabilities to positively interact with the envi-
ronmental changes. We obtain a robust neural network GMV 
algorithm witch give much better result than the classical 
one. The aim was to present a simple robust algorithm based 
on the stochastic control theory for many kind of seismic 
excitations. According to the seismic excitation amplitude, it 
is possible to develop many controller for each excitation 
and then to choose the corresponding one. The calculation of 
one ANN controller is sufficient to maintain the perfor-
mance of the closed system without any other calculation or 
using adaptive control theory. In our case we can calculate 
the ANN parameter once and then to implement this one in 
parallel calculators as transputer or equivalent circuits. 
These kind of solution is more convenient in seismic ap-
plication for civil engineering. 
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