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Abstract: This contribution introduces an Ant Colony Optimization (ACO) algorithm with re-initialization mechanism. 

The whole search process is broken by re-initialization into shorter semi-independent steps called “macro cycles”. The 

length of macro cycle depends on pheromone accumulation and can be adjusted by a user parameter. It is shown that re-

initialization mechanism prevents ACO algorithm from pheromone saturation and consecutive stagnation. This approach 

avoids overhead caused by algorithm run with excessive pheromone values where further exploration is hardly possible. 

The solution offers lower CPU cost of the search process and enables automation of heuristic search especially in changing 

environments like dynamic networks. The efficiency of proposed method is demonstrated on a path minimization problem 

on 50 node graph. 
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1. Introduction 

Wide range of problems like Routing problem, 

Assignment problem, Scheduling problem and others can 

be transformed into graph representation. Exact algorithms 

for instance Dijkstra or Bellman-Ford appear to be slow 

and inefficient on large scale graphs. It is not always 

necessary to find the best possible solution. Instead good 

quality solution in reasonable time is often preferred. This 

is the reason why heuristic methods become popular. 

Among the well-known graph search algorithms that 

utilizes heuristic are A* search [1] and ACO algorithm. 

Ant colony optimization represents an efficient tool for 

optimization and design of graph oriented problems. It is a 

multi-agent meta-heuristic approach and was first purposed 

in 1991 by Dorigo at al. as Ant system (AS) algorithm.  

Ants are using indirect form of communication via 

trailing pheromone. As ants are passing the terrain (graph) 

they mark used routes (arcs of the graph) by chemical 

substance called pheromone. Other ants can sense the 

substance and follow the same track. 

During the search process each ant sets off from the ant 

colony (start position) and moves to search food 

(destination). The aim is to find the shortest path. On their 

way back they use the same way from which abundant 

loops have been removed. The amount of pheromone (1) 

∆τ
k
ij(t) the k-th ant produces is inversely proportional to the 

tour length L
k
(t). 
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T
k
(t) is the tour generated by ant k, Q is a constant and tuple 

(i, j) denotes beginning and termination node of an arc. All 

pheromone tracks (2) are preserved by arcs of the graph  
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Where ρ ∈ (0,1) is the pheromone persistence (1 - ρ is 

evaporation rate) and m is the number of ants. Evaporation 

rate is a user adjusted parameter and affects pheromone 

durability; i.e. how long the acquired information will be 

available. Too high values causes random search (quick 

evaporation), too low values get algorithm stock in local 

optimum. 

An ant in each node has to make a decision which arc to 

take. This probabilistic choice is called random 

proportional rule (3). Ant chooses the next node only from 

its neighborhood N
k
i except the node it visited previously. 
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The probability pij(t) of choosing the particular arc (i, j) 

depends on pheromone τij(t) and the heuristic ηij values 

associated with the arc. Symbols α and β are weight 

parameters and represents balance between ants’ gathered 

knowledge and user preferred area. Heuristic values ηij 

affect probability only at the beginning when pheromone 

values are low. The more pheromone is located on 

particular arc, the more attractive it appears. 

2. ACO Algorithms with Diversity 

Control 

Parameters for setting the balance between exploration 

and exploitation belong to the most important variables for 

majority of heuristic algorithms. 

Even author of ACO realized the need for diversity 

control and introduced Ant Colony System (ACS) [3] 

which differs from original Ant System in three main 

aspects: (i) pseudo-random proportional rule, (ii) global 

and (iii) local pheromone update rule.  

Pseudo-random proportional rule uses random uniformly 

distributed variable q ∈ (0,1)  which is compared with a 

tunable parameter q0 ∈ 1,0  (4). 

{ } 0arg max ( )k
i

ij ijj N
t if q q

j
J otherwise

βτ η
∈

 ≤= 
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            (4) 

where J is a random variable selected according to the 

probability distribution given by (3). Low q0 values prefer 

balanced exploration of new paths.  

Since in a global pheromone update rule only the best-

so-far ant is allowed to add pheromone the pheromone 

value is weighted by pheromone persistence parameter ρ to 

prevent rapid pheromone accumulation (5). 

( 1) (1 ) ( ) ( ); ( , )bs bs

ij ij ijt t t i j Tτ ρ τ ρ τ+ = − + ∆ ∀ ∈  (5) 

According to local pheromone update rule each ant 

immediately after cross the arc reduces the pheromone 

value (6). This supports further exploration since the 

crossed arc becomes less desirable for the following ants. 

0( 1) (1 ) ( )ij ijt tτ ξ τ ξτ+ = − +                (6) 

Nakamichi and Arita [4] chose another approach to 

diversity control. Instead of control diversity in depositing 

pheromone they control diversity in finding tours. Authors 

introduced a mechanism of random selection in addition to 

the probabilistic selection. Random selection is a simple 

operation which selects next node from the list of unvisited 

neighbors with the equal probability. Random selection rate 

r is probability with which random selection operates each 

time an ant has to choose the next node and represents a 

user parameter which adjusts the balance between 

exploration and exploitation. 

Kumar, et al. [5] enriched AS with (i) prevention of 

quick convergence and (ii) stagnation avoidance 

mechanisms. 

The mechanism for prevention of quick convergence (i) 

is based on pseudo-random proportional rule (4), but the 

tunable parameter q0 is dependent on algorithm iteration (7). 
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Nmax is the maximum number of iterations and NC is the 

iteration counter. At the beginning of the search process 

when q0 values are low the bias exploration is preferred. In 

this way a very quick convergence of the algorithm into 

locally optimized solution is prevented. 

The stagnation avoidance mechanism (ii) is based on 

comparison of random generated quantity q ∈ (0,1) with 

probability p
k
ij(t) of the selected arc. If q < p

k
ij(t), then use 

the probability selection rule max(pij
k
(t)), if q ≥ p

k
ij(t), then 

choose the next node randomly. This occurs in later stages 

of the search process when pheromone values on the most 

selected arcs tend to be high and thus the chance of further 

exploration is low. Randomized selection at the later stages 

of the search process decreases the change of stagnation in 

local optimum. 

Stützle and Hoos [6, 7] applied pheromone limit values 

in their MAX-MIN Ant system (MMAS). MMAS uses 

similar update rule to ACS [3] where only one ant is 

allowed to update the pheromone. But instead best-so-far 

solution only also iteration-best solution is used in an 

alternate way. Since the elitist strategy in update rule leads 

to stagnation in suboptimal solution, MMAS limits possible 

range of pheromone values to the interval [τmin, τmax]. 

Pheromone trail limits have the effect of limiting the 

probability values pij of selecting arc which favors 

exploration over exploitation and consecutive stagnation. 

Furthermore, the pheromone trails are initialized to 

upper pheromone limit values, which, together with a small 

evaporation rate increases the exploration of new paths 

from the beginning of the search process. In the later 

phases when the system approaches stagnation (i.e. no 

improved has been generated for a certain number of 

consecutive iterations), pheromone values are re-initialized. 

3. Pheromone Value Limits 

The overall pheromone from all the ants which is 

accumulated on the graph is described by (2). Let suppose 

an ideal progress of the algorithm, i.e., from the first 

iteration all the ants will use the same path. The amount of 

pheromone accumulated on the arcs of the path is given by 

(1) and (2): 
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The pheromone limit value for arc which is never used 

by any ant (m=0) is zero 

0lim ( ) lim(1 ) 0; (1 ) 1t
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and the pheromone limit value for arc that is always used 

by all the ants is infinitive geometric series 
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of which convergence test is the ratio  
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Simulation of (2) and its limit value is on Figure (1). 

Three phases of the search process can be distinguished: 

preliminary (0<t<40), saturation (40<t<80) and stagnation 

(t<80) phase. 

Preliminary phase is characteristic by rapid growth of 

overall pheromone value. In saturation phase pheromone 

evaporation takes effect. Stagnation phase represents 

excessive pheromone values accumulated in the most 

attractive part of the search area given by local or global 

optimum.  

 

Figure 1. Simulation of pheromone accumulation (2) for m=2, L=5,  Q = 

1 and ρ = 0.05. 

4. Re-Initialization 

In the stagnation phase pheromone evaporation is in 

balance with accumulation. Due to pseudo-random 

proportional rule (4) not all the ants will use the same path. 

Majority of the ants will be attracted by the same search 

area with excessive pheromone values and further 

exploration is hardly possible. For this reason re-

initialization is proposed. It is not able to estimate the 

pheromone limit value by using (12). However, pheromone 

derivation can be used instead to monitor the search 

process.  

In this work it is proposed to re-start the search process 

in user adjustable point x where pheromone derivation 

equals pheromone value (13). 

( )
( )

d t
x t

dt

ττ =                                 (13) 

At the re-initialization point, excessive pheromone values 

are decreased with the following requirements: deteriorate 

the difference between individual pheromone values and 

pheromone arithmetic mean (i), reduction will be directly 

proportional to its size (ii) and overall pheromone value 

will be reduced (iii). In this case a non-linear 

transformation is used (14). 
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The overall pheromone value τ  should be decreased 

with respect for the information lost. The aim is to escape 

excessive pheromone values but preserve acquired 

knowledge about the problem. For that purpose reducing 

coefficient rc reflects the speed of pheromone accumulation 

(15). 

( )
( )

r

m t
rc

A t t

τ=
−

                            (15) 

|A| is a number of arcs of the graph, t is current iteration 

and tr is iteration of the last re-initialization or zero in the 

beginning. Let call a section between two re-initializations 

a macro cycle. 

The search process is divided into macro cycles. The 

number of macro cycles as user defined parameter is easier 

to estimate than number of iterations. It has been shown 

that low number of macro cycles is sufficient [8]. 

4.1. Stagnation Avoidance Mechanism 

A pseudo-random proportional rule with utilization of q0 

variable parameter is used, but instead of the whole search 

process (7) it should be applied within each single macro 
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cycle.  

The simple approach is to create a rank of equally 

distributed vales for q0 (16), one for each macro cycle [8]. 

Since q0 is compared with probability of choosing 

particular arc p
k
ij(t), the maximum interval span 

mazpp ,min  for q0 values falls in range  1,0 . Provided 

the arc with the highest probability p
k
ij(t) should not be 

always chosen during the first macro cycle (probabilistic 

selection (3)) and never chosen during the last macro cycle 

(pseudo-random selection rule (4)), the interval have be 

reduced according to user defined values. 
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Nmc is the total number of macro cycles and N is current 

macro cycle.  

In this article it is proposed to apply the similar approach 

for stagnation avoidance mechanism to original paper [5]. 

The parameter q0 will vary within the range in each single 

macro cycle. The solution (17) is based on the difference 

(13) and will be close to zero at the beginning and close to 

one at the end of each macro cycle. 

0
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τ τ
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The name of the algorithm is derived from variable 

parameter q0 as ACO with variable macro cycle (ACOVMC). 

 

Figure 2. Ideal pheromone derivation 

5. Test Case 

The aim of the test case is to show the impact of (i) 

macro cycle length and (ii) q0 value on algorithm 

performance as well as comparison ACO with re-

initialization with one of the best performing ACO 

algorithm ACOKTS [5].  

Common ACO parameters for both algorithms were set 

in accordance with [9] and are listed in the Table 1. Other 

variable parameters like number of ants and number of 

macro cycles are listed in the result Table 2.  

Limits for variable parameter q0 for pseudo-random 

proportional rule (16) were set within the interval 0.1,0.9 . 

Variable parameter for macro cycle length x (13) was 

chosen to cover (i) preliminary phase and (ii) preliminary 

and saturation phase. The values were estimated as (i) 

0.0093 and (ii) 0.00093 respectively (Figure 2). 

For each setting 500 trials were performed. At first 

ACOVMC was tested and mean value of termination cycle 

tc  was determined for each setting. Then tc  was 

considered as number of iterations for ACOKTS. 

Test graph is random generated symmetrical multi-graph 

with 50 nodes and 200 arcs (Figure 3). Node coordinates 

x,y fall in range 0,1  and arc values cij are equal to 

Euclidean distances between arc nodes (i,j). Arc lengths cij 

have been considered as heuristic values ηij. This setting 

simulates common traffic optimization problem. The task is 

to find the shortest path between two given nodes - the start 

node ns=2 and the end node ne=31.  

For test evaluation only probability of finding the global 

optimum (T = [2 26 47 22 18 24 31]) was used.  

Table 1. Common ACO parameters settings 

Parameter name Value 

Initial pheromone value τij(0) 0.1 

Weight of pheromone information α 0.5 

Heuristic values ηij 0.1 

Weight of heuristic information β 0.1 

Pheromone persistence ρ 0.05 

Number of ants m 10 

Number of cycles 200 

 

Figure 3. 50 node graph with the shortest path in green. 

6. Results 

The more resources (ants or macro cycles) are available 

the higher the probability of finding a global optimum is. 

Resource allocation between ants and macro cycles 

depends on graph complexity. The algorithm with macro 
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cycles benefits more from additional ants than from more 

macro cycles (Table 2) which similar to other ACO 

algorithms and complies with [9]. 

6.1. Macro Cycle Length 

Extended macro cycle which covers saturation phase has 

more than twice probability of finding the global optimum 

in most cases compared to short macro cycle which 

includes only preliminary phase (Table 2, columns 3, 4). 

Since most of the pheromone is already accumulated at the 

end of the preliminary phase (Figure 1), mainly re-

distribution of trailing pheromone occurs in the later stages 

of the search process. Pheromone concentration into 

particular area of the search space is caused by further 

utilization of acquired knowledge in stagnation phase.  

Depending on parameter x (13) setting for macro cycle 

length, extended macro cycle can be twice longer (Figure 

1). This results in twice longer overall search process. 

Hoverer, ACOVMC results comparison four short macro 

cycles with two long macro cycles reveals higher 

performance of long macro cycles in each case. 

6.2. q0 Parameter 

Results show better performance of ACO with variable 

macro cycles (ACOVMC) over constant macro cycles 

(ACOMC) (Table 2, columns 4, 5). This can be explained by 

graduate values of q0 parameter (17) in stagnation 

avoidance mechanism which disturbs autocatalytic process 

mainly during the saturation phase. This results weaker 

selection pressure which favors exploration and better local 

optimization during saturation phase. 

6.3. ACOVMC and ACOKTS 

Comparison between ACO with variable macro cycles 

and ACOKTS (Table2, columns 4, 6) on sample graph 

reveals that results are varying and fully comparable. In 

general, test data shows slightly better performance of 

ACOVMC for more resources (ants or macro cycles). 

Table 2. Simulation results on 50 node graph. 

ants 
macro 

cycles 

Probability of finding the global optimum [%] 

ACOVMC 

x = 0.01 

ACOVMC 

x = 0.00093 

ACOMC 

x=0.00093 
ACOKTS 

2 2 5.2 14.8 9.8 11.4 

2 4 12.8 18.4 20.4 28.2 

2 6 14.4 34.2 29.2 42.2 

4 2 13.2 27.2 23.2 31.4 

4 4 20.6 49.4 37.6 49.4 

4 6 31.2 65.2 53.2 62.6 

6 2 19.4 45.2 35.2 41.8 

6 4 32.4 65.6 54.6 63 

6 6 46.6 80.6 68.4 78.8 

7. Conclusion 

It has been proved on sample test that ACO with long 

variable macro cycles is fully comparable with one of the 

best performing ACO adaption of Kumar et al. (2003). The 

ACO with re-initialization benefits from (i) parameter 

representing number of macro cycles which is easier to 

estimate than number of iterations, (ii) reducing overhead 

caused by saturation phase of the search process and (iii) 

self-termination ability. 

The above mentioned advantages enable implementation 

of heuristic algorithms for automatic optimization in 

manufacturing systems especially in dynamic environment 

where good solution has to be delivered in real time. 
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