
 
Automation, Control and Intelligent Systems 
2021; 9(1): 6-21 
http://www.sciencepublishinggroup.com/j/acis 
doi: 10.11648/j.acis.20210901.13 
ISSN: 2328-5583 (Print); ISSN: 2328-5591 (Online)  

 

Upwind Horizontal Axis Wind Turbine Output Power 
Optimization via Artificial Intelligent Control System 

Endalew Ayenew Haile
1, *

, Getachew Biru Worku
2
, Asrat Mulatu Beyene

1
, Milkias Berhanu Tuka

2
 

1Center of Excellence for Sustainable Energy, College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology 
University, Addis Ababa, Ethiopia 

2Electrical Power and Control Engineering, School of Electrical and Computer Engineering, Adama Science and Technology University, 
Adama, Ethiopia 

Email address: 

 

*Corresponding author 

To cite this article: 
Endalew Ayenew Haile, Getachew Biru Worku, Asrat Mulatu Beyene, Milkias Berhanu Tuka. Upwind Horizontal Axis Wind Turbine Output 
Power Optimization via Artificial Intelligent Control System. Automation, Control and Intelligent Systems. Vol. 9, No. 1, 2021, pp. 6-21.  
doi: 10.11648/j.acis.20210901.13 

Received: January 6, 2021; Accepted: January 16, 2021; Published: January 25, 2021 

 

Abstract: Power capturing capacity is one of the key performance indicators of wind turbines. This article presents a study 
done on the optimization of output power of upwind horizontal axis wind turbine using artificially intelligent control system. 
The study shows how blade tip speed ratio (λ) and pitch angle (β) are optimized to increase wind turbines power conversion 
coefficient (Cp) which increases the output power. An artificial intelligence system named Mandani fuzzy inference system 
(MFIS) was applied to optimize the power conversion coefficient in combination with blade pitch actuator control. To this end, 
a novel optimization technique is designed that maximizes the power harvesting ability of wind turbines by updating the 
parameters of the membership functions of fuzzy logic found in the MFIS. With the application of this optimization method, 
a power conversion coefficient Cp of 0.5608 value is achieved at optimal values of λ and β. As a result, the energy harvesting 
ability of the wind turbine considered is improved by 16.74%. This study clearly shows that the wind energy harvesting 
capacity of wind turbines can be enhanced via optimization techniques that could be further implemented in wind turbine 
blade pitch drive system. Thus, this novel optimization method creates further insights for the wind energy industry in 
reducing the cost of energy generation. 

Keywords: Energy Maximization, Upwind HAWT, MFIS, Wind Turbine Performance 

 

1. Introduction 

The wind turbine power capturing capacity is one of its 
main performances. Variable-speed and variable-pitch 
horizontal axis wind turbines (HAWT) have a good capacity 
of power capturing from the wind. These types of wind 
turbines use typically two control strategies; speed control 
and blade pitch angle control. When the wind speed is 
between cut-in and rated values, the speed control can 
repeatedly alter the rotor speed to maintain it at a value 
around rated speed, and hence, the turbine output power will 
be optimized. While the wind speed becomes above the rated 
speed, blade pitch angle adjustment is mandatory to limit 

rotor output power to the rated value by maintaining the rotor 
speed constant at the rated value. 

In addition to the wind speed, major parameters of the 
wind turbine to harvest maximum energy from the kinetic 
energy of the wind are mainly related to blade aerofoil. These 
are blade length, blade chord length, blade twist angle (sum 
of pitch angle and attack angle), and turbine’s lift coefficient 
to drag coefficient ratio. To maximize the power output of the 
wind turbine rotor, research has focused on the blade aerofoil 
shape known as a lifting surface. Devices that improve blade 
aerodynamic such as small skewed fins (vortex generators) 
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are inserted into modern wind turbine blades [1, 2]. This is to 
create a thin current of turbulent air on the surface of the 
blade aerofoil and prevent the aerofoil from stalling at low 
wind speed. The turbulent air delays airflow separation or 
mixes the boundary of the air layer (laminar and turbulent 
flows on the upper surface of blade aerofoil) with 
faster-moving air from the free stream. This reduces wake on 
the upper surface of blade aerofoil, enhances lifting force, 
and reduces the effect of aerodynamic drag force and losses 
due to it; and hence improves the wind turbine energy 
capturing capacity. 

The wind turbine rotor can harvest only a fraction of 
power available in the wind due to the airflow requirements. 
The ratio of harvested power by wind turbine rotor to 
extractable power over an area swept by the turbine blade in 
the wind is called a power conversion coefficient (Cp). 
According to Betz’s limit, theoretically, the maximum value 
of the power conversion coefficient from wind kinetic energy 
to mechanical energy is 0.593 [3, 4]. 

The objective of this study is to optimize the power 
harvesting capacity of the upwind HAWT through 
optimization of Cp using an artificial intelligent control 
system called the Mamdani fuzzy inference system (MFIS). 
The wind speed is naturally an uncertain meteorological 
phenomenon. It causes uncertainty in power harvesting. The 
fuzzy logic is a very suitable tool to handle such uncertain 
conditions. The MFIS can map a non-linearity between its 
inputs and outputs. The major contributions of this study 
are 

1. Use of MFIS scheme for Cp optimization with the 
controller of a wind turbine blade pitch actuator. 

2. Optimization of wind turbine output power in wind 
energy conversion systems (WECS) by robust handling 
of uncertain wind speed. 

3. Introduction of advanced and simplified technique to 
optimally update parameters of the membership 
function of fuzzy logic in the proposed scheme. 

4. Deployment of the proposed optimization tool, an 
interesting improvement in the output power of the 
wind turbine is achieved. 

In the next parts of this paper, the Literature Review, 
Methodology, the Optimization Technique, Results and 
Discussion of the research are presented. 

2. Related Literature Review 

Optimization of the power harvesting ability of the wind 
turbine was carried by many researchers independently using 
blade element momentum theory (BEMT). Glauert attained a 
value of 0.416 and Joukowky got 0.5 values for the power 
conversion coefficient [5]. Gens N. S applied the modified 
momentum equation and got a better power conversion 
coefficient than Glauert’s and Joukowky’s results in HAWT 
[5]. The optimal actuator disk theory of HAWT was developed 
by Glauert in 1935. Theoretically, he claimed 0.416- 0.587 
value of the power conversion coefficient [1]. Currently, 
BEMT is an industry-standard used by all producers of the 

wind turbine and its blade [5]. Typical effects of the number of 
turbine blades and mechanical design of blades aerofoil 
drag-to-lift ratio on the optimal power conversion coefficient 
of a horizontal axis wind turbine (HAWT) were presented by 
Robert E. Wilson and his colleagues [6]. As per the result of 
their work, the power conversion coefficient is around 0.5. 
Also, Ranjan Vepa stated that according to the aerodynamic 
design of the turbine blade and choice of its profile, 
three-bladed HAWT can convert 35% to 38% of wind energy 
to mechanical energy [8]. But, in practice, wind turbine 
converts only 20% to 40% of the wind energy to mechanical 
energy [7]. Therefore, to improve the power harvesting 
capacity of the HAWT, an optimization technique for Cp is 
required. 

The enhanced value of Cp upsurges the wind turbine 
productivity and hence reduce the cost of energy production. 
Different algorithms of maximum power point track (MPPT) 
for performance improvement of WECS were discussed in the 
literature [9-11]. To mention some, tip speed ratio control, 
power signal feedback control, perturb and observe, hill climb 
search, optimal torque control, hybrid of MPPT algorithms, 
and artificial intelligence were debated. The MPPT-curve of 
the wind turbine was improved by Lyapunov-function based 
PI control [12]. Accordingly, the 0.472 value of Cp was 
achieved. In another study of MPPT on the permanent magnet 
synchronous generator employing conventional optimum 
torque control with a toque error feed-forward algorithm, a Cp 
value of 0.423 was achieved on WECS [13]. According to the 
researches indication, the maximum achievable value of Cp 
ranges between 0.2 and 0.4 for wind turbines with three or 
more blades [14, 15]. Neuro-fuzzy methods were applied to 
estimate the Cp of the wind turbine and the maximum 
estimated value was 0.352 [16]. Radial base function neural 
network along with optimal torque control was employed for 
MPPT of double fed induction generator (DFIG) using WECS 
and 0.52 optimal Cp is attained [17]. The simulation result of 
the study on the optimized pathway, aero-generator modeling, 
and control upon wind turbine driven by PMSG shows a 
power conversion coefficient of 0.429 [18]. The optimal value 
of Cp of the three-bladed wind turbines is equal to 0.47 [19]. A 
value of 2.36% improvement in power is obtained by using the 
maximum extraction technique with power optimization and 
control [20]. Tony Hawkins [21] implemented robust 
estimation and Lyapunov extremum seeking control and 
extracted 47.25% of power in the wind. As per [22], optimally 
designed wind turbines with two or three blades can have Cp 
above 0.4. 

Based on the above discussions on the mechanical design of 
the wind turbine blade, the HAWT has a good capacity to 
harvest power from wind. However, due to the uncertain 
environment, system operational limitation like different 
losses in the wind energy conversion system (e.g. turbine 
blade tip loss, and mechanical loss), and controller inaccuracy, 
generally, wind turbines convert only about 30% to 35% of the 
available wind energy into electrical energy [8]. 

The summary of review results related to the recent studies 
of maximization of output power of the wind turbine is 
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presented in Table 1.  

Table 1. Summary of Review Results Related to Recent Works in Wind Turbine Output Power Maximization. 

Reference Objective Method Optimal Cp 

[17] Maximum power harvesting RBFNN control strategy of MPPT of WECS 0.5200 

[23] 
Search maximum power point (SMPP) of variable-speed 
WECS 

SELF-ADAPTIVE perturb and observe algorithm for MPPT 0.4800 

[24] Optimize and control the HAWT PSO with a neuro-fuzzy controller 0. 4669 

[25] MPPT for wind turbine Optimal torque control 0.4800 

[26] Optimize power capture by wind turbine RBFNN technique 0.4800 

[27] Wind turbine output power improvement fuzzy inference based Generator torque control 0.4800 

[28] Maximize output power of SCIG based WECS Fuzzy Logic Controller 0.4700 

[29] Extract maximum power from the wind � control via ANN-PSO for MPPT of small wind turbine 0.4750 

[30] Extract maximum energy from the wind Fuzzy logic control based on HCSM 0.4550 

[31] MPPT for WECS � control via GA Optimization 0.4800 

[32] WECS output power maximization Direct torque control of WT driven DFIG 0.4900 

 

3. Methodology 

The wind turbine power conversion coefficient (Cp(λ,β)) is 
associated with the tip speed ratio (λ) and the pitch angle (β) of 
the turbine blade. The optimal power can be captured only 
under an optimal value of Cp(λ,β) at optimal values of λ and β. 

The proposed strategy is employed with real-time wind 
speed data that was collected from the Adama-II wind farm 
North site, Adama, Ethiopia. The data was collected at 10 
meters above ground from January to June 2020. This site is 
geographically located at the latitude of 8°18'35.5''N, the 
longitude of 38°53'4.2''E and elevation of 1712 m above sea 
level in Ethiopia about 95 km far away to the southeast of 
Addis Ababa. The picture of the site is presented in Figure 1. 
The data is collected using the METEO-40 data logger and is 
logged every 10 minutes. Every day, the METEO-40 data 
logger stores 144 samples. This data is presented in Figure 2 
after extrapolated to the hub height of the SANY SE7715 wind 
turbine. To validate the result of this study, the factory test 
report data of the SE7715 wind turbine is used. Practically, the 
generator’s output power and corresponding Cp, and rotor 
speed data were recorded from the SCADA system in the 
control room. The analysis of data and optimization of Cp(λ,β) 
of the wind turbine was done by using MATLAB software. 
The simulation and experimental results are compared. 

The wind turbine rotor output power (Pr) in watt expressed 
in (1) as a function of wind speed (Va) in m/s, air density (ρ) in 
kg/m3, and the swept area (A = πR2) in m2 with a rotor radius R 
[33, 34]. 

2 3
r aP   = 0.5 R V ( ),pCρπ λ β             (1) 

a

R

V

ωλ =                    (2) 

Equation (1) indicates the rotor output power depends on 
and reliant on the pitch angle and the tip speed ratio. Minor 
variations in λ and β can change the turbine rotor output power. 
As was discussed in the literature review part of this study, 
many of the parameters of the wind turbine that influence the 

energy harvesting ability of the turbine are directly or 
indirectly related to the blade pitch angle (β). The effect of the 
blade length in combination with rotor speed (ω) in rad/s and 
the wind speed on the energy harvesting are governed by the 
blade tip speed ratio as given in (2). 

 

Figure 1. Adama-II Wind Farm Site. 

For variable speed and variable pitch regulated HAWT, 
different but equivalent empirical relations for power 
conversion coefficient (��(�, 	

 are presented as a function 
of � and β in [8, 22]. One of such empirical relations [35] is: 

��(�, 	
 = 0.5176 ������ − 0.4	 − 5� . �
����� + 0.0068� (3) 

Where  

�
��
=	 �

�"#.#$% −
#.#&'
%("�              (4) 

According to the wind speed condition, pitch angle (β) 
could be adjusted by the pitch actuator controller; β in (3) is 
approximately set to zero degrees in the case of the wind speed 
is below the nominal speed and hence Cp(�,β) depends only on 
the �. This is depicted in Figure 3 for different values of β and 
computed �  values for the SE7715 wind turbine, which 
shows a decrease of Cp(�,β) with an increase of β. To capture 
maximum power, the turbine should operate at its optimal 
Cp(�,β). To optimize Cp(�,β), a fuzzy logic control technique 
is employed. The fuzzy logic is the utmost suitable technique 
for power extraction from the wind. Because the fuzzy logic 
can handle an uncertain behavior of the wind speed in energy 
harvesting by the wind turbine. The key pro of a fuzzy 
logic-based control tool is that it does not need an exact 
mathematical model of the system. In the next section, the 
optimization technique for the output power of the wind 
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turbine is presented. 

 

(a) 

 

(b) 

Figure 2. Average Wind Speed Data: (a) every 10 minutes of Jan 21, 2020, (b) 
Daily in the duration of January to June 2020. 

 

Figure 3. Wind Power to Mechanical Power Conversion Coefficient as a 
function of � and at specific β of SE7715 Wind Turbine. 

4. Output Power Optimization Technique 

The Mamdani fuzzy inference system (MFIS) is proposed 
to maximize the power extraction capacity of off-grid HAWT 
from the wind. The primary objective of using MFIS is to 
maximize wind power conversion efficiency-Cp(� ,β) of a 
variable speed horizontal axis wind turbine. The MFIS is 
integrated with the wind turbine blade pitch actuator control 
system. The MFIS was built by E. Manani in 1974 for the first 
time [36]. 

As revealed in Figure 4 for the proposed optimization 
scheme, the wind speed data from an anemometer and a power 
error are the inputs to the pitch angle actuator controller. When 
the actual wind speed is far from the nominal value, the error 
between generator output power (Pge = ηgηgbPr; for ηg and ηgb 
are the efficiency of generator and gearbox respectively) and 
generator nominal (Pref) power will be non-zero. Based on this 
error and wind speed status, the turbine blade is pitched by the 
actuator and hence β and rotor speed are optimally regulated. 
The β and � from the wind turbine are inputs to the MFIS 
model to optimize Cp(�,β). Next, the detail of the MFIS based 
optimization technique and wind turbine blade pitch actuator 
control system is presented. 

4.1. Pitch Angle Control Mechanism 

The wind turbine blade pitch actuator control is formulated 
based on a fuzzy logic controller. It generates a desired 
command pitch angle (βd) as seen in Figure 5 and Figure 4. 
The hydraulic actuator for the wind turbine blade pitch system 
is modeled using the first-order model as follows [37]. 

( ) 1

( )

d s

dt s s

β βτ β
β τ

= ∆ ⇒ =
∆

 For dβ β β∆ = − ; 

( ) 1

( ) 1d

s

s s

β
β τ

=
+

           (5) 

Where τ is the pitch actuator time constant and usually 
ranges between 0.2 to 0.25 seconds [37]. The specification of 
the SE7715 wind turbine blade pitch actuator is presented in 
Table 2. 

Considering these specifications, the pitch actuator 
controller is designed. For normal operation of the wind 
turbine, with pitch actuator running at 5°/*�+ with 0.0133% 
accuracy, the error is 

	, − 	 = 0.0128 ∗ 90° = 1.15°. 
Hence the time constant is computed as 

1.15
( ) / ( / ) 0.23sec.

5 / secd d dtτ β β β °= − = =
°

 

The input of the fuzzy logic controller is the power error (Pe) 
between the generator's actual output power (Pge) and the 
reference power (Pref), and the real measured wind speed (Va) 
at any instant time. Pe was calculated as follows. 

e ge refP  = P  - P                   (6) 

The ranges of Pe and Va are depicted in Table 3. Pe is 
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scaled on the base of 1.5 MW, Va is scaled on the base of 25 
m/s, and βd is scaled on the base of 90°The fuzzified 
linguistic variables of the input to the controller of the blade 
actuator are presented in Table 3 for EVVB, VVB, VB, B, M, 
S, VS, VVS ZR are fuzzy subsets that represent extreme very 
very big, very very big, very big, big, medium, small, very 
small, very very small, and zero respectively. 

The pitch angle controller was designed to have suitable 
values for the pitch angle input to the power conversion 
coefficient optimization scheme. Thus, as shown in Table 3, 

the most dominant eleven Mandani fuzzy logic rules “IF Pe is 
PEj AND Va is VAj THEN βd is βDj” are used to generate the 
command input to the blade actuator. PEj, VAj, and βDj 
represent universes of a discourse of fuzzy subsets of the 
error, instant wind speed, and the desired pitch angle 
respectively. The pitch control traces the status of the wind 
speed and the power error. The power error is zero starting at 
the wind speed equal to the rated value onward. As the wind 
speed increases the pitch command too. 

Table 2. Technical parameters of the 1.5MW series SE7715 WTG. 

Parameter Parameter value /description 

Wind rotor 

Rated power 1500 kW 
Rated wind speed 12 m/s 
Cut-in wind speed 3.5 m/s 
Cut-out wind speed 25 m/s 
Height of wheel hub center 77 m 
Rotor radius 37.8 m 
Rated rotating speed 19 rpm 
Number of blades 3 
Variable pitch system 3 independent controls 

ηg and ηgb 
Generator efficiency 0.97 
Gearbox efficiency 0.97 

Variable pitch system basic 
performance 

Normal variable pitch speed 5°/s 
Sudden stop variable pitch speed 10°/s 
Variable pitch angle 0~90° 
Accuracy of the blade adjustment 0.0128~0.0133% 

Table 3. FIS Rules for Input Pe and βd of Pitch Actuator Fuzzy Logic Controller. 

Wind Speed (Va) Power error (Pe) Pitch angle (βd) 

Ranges Linguistic Variables Ranges Linguistic Variables Ranges Linguistic Variables 

[0 0.14] ZR [-1 -0.97] EVVBN [-1 0] EVVBN 

[0.14 0.20] VVS [-0.97 -0.88] VVBN [-1 0] EVVBN 

[0.20 0.28] VS [-0.88 -0.68] VBN [0 0] ZR 

[0.28 0.36] S [-0.68 -0.32] BN [0 0] ZR 

[0.36 0.42] M [-0.32 0] MN [0 0] ZR 

[0.42 0.53] B [0 0] SN [0 0] ZR 

[0.53 0.60] VB [0 0] ZR [0 0.133] S 

[0.60 0.72] VVB [0 0] ZR [0.133 0.378] M 

[0.72 0.80] EVVB1 [0 0] ZR [0.378 0.500] B 

[0.80 0.88] EVVB2 [0 0] ZR [0.500 0.611] VB 

[0.86 1] EVVB3 [0 0] ZR [0.611 0.700] VVB 

4.2. MFIS Based Optimization Technique 

The degree of the membership functions is the major feature in the computing of the fuzzy logic sets [38]. This study 
employs fuzzification of inputs (λ and β) crisps to MFIS and output (Cp(λ,β) = Cp) crisp of the MFIS. As shown in Figure 4, the 
MFIS based optimization scheme has four major blocks or stages to process the input-output data pairs. 

The first is the fuzzifier of input-output crisp data pairs. As indicated in (7), the triangular-shaped activation function is used 
to compute membership functions (MFs) of the crisps. 

1 ,
( )

0,

j

j j
j j

elsewhere

ι
ι ι

ι

ζ σ
ζ σ σµ ζ σ

 −
 − − ≤= 



                                   (7) 

Where ζ  stands for the crisps (inputs λ and β) with j
ισ stands for the center and/or width parameters (σλj

ι(k) and σβj
ι(k)) 

of MFs for ι = 1, 2,…, 25 = L is numbers of fuzzy inference rules, j = 1, 2,… is fuzzy MFs. 
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Figure 4. MFIS based Optimization Scheme to Maximize Output Power of the HAWT. 

 

Figure 5. Variable-pitch Actuator with Fuzzy Logic-based Control. 

The second stage is the fuzzy inference engine that makes 
decisions using the fuzzy IF-THEN rules with “AND” or 
“OR” operators. This block contains the rule-base (IF-THEN 
N rules), database (defines membership functions of fuzzy 
sets), and decision-making (computes inference operation: 
max- product or max-min). For instance, the fuzzy rule-ι is 

Rι: If � is �0 ι AND β is βj
ι THEN Cp is Cpj

ι    (8) 

Where λj
ι and βj

ι, and Cpj
ι are the fuzzy sets of premises and 

output consequent at fuzzy rule ι. Based on the knowledge 
obtained from Figure 3 and model (3a), the fuzzy sets and 
rules base is presented in Table 4 and Table 5. 

Table 4. Fuzzy Rule-based Optimization of Cp(�, β). 

Cp(�,β) 
β 

Z S M L VL 

� 

Z Z Z Z Z Z 
S L L M S Z 
M VL L M S Z 
Z Z Z Z Z Z 
L S S S S Z 
VL Z Z Z Z Z 

Where Z= Zero, S = Small, M = Mean, L = Large, and VL 
= Very Large is the fuzzy sets of the crisp inputs and output 
variables. The pitch angle input to MFIS is adjusted by the 
pitch actuator controller that is presented in section 4.1. 

Table 5. The MFIS IF-THEN Rules to Maximize Wind Power to Mechanical 
power conversion coefficient (Cp) of SE7715 Wind Turbine. 

Fuzzy Rule No. 
Fuzzy Rules that Relate each fuzzy sets with 

Crisps in the Domain 

R1 IF λ is Z AND β is Z, THEN Cp is Z 
R2 IF λ is Z AND β is S, THEN Cp is Z 
R3 IF λ is Z AND β is M, THEN Cp is Z 
R4 IF λ is Z AND β is L, THEN Cp is Z 
R5 IF λ is Z AND β is VL, THEN Cp is Z 
R6 IF λ is S AND β is Z, THEN Cp is M 
R7 IF λ is S AND β is S, THEN Cp is M 
R8 IF λ is S AND β is M, THEN Cp is M 
R9 IF λ is S AND β is L, THEN Cp is S 
R10 IF λ is S AND β is VL, THEN Cp is Z 
R11 IF λ is M AND β is Z, THEN Cp is VL 
R12 IF λ is M AND β is S, THEN Cp is L 
R13 IF λ is M AND β is M, THEN Cp is M 
R14 IF λ is M AND β is L, THEN Cp is S 
R15 IF λ is M AND β is VL, THEN Cp is Z 
R16 IF λ is L AND β is Z, THEN Cp is S 
R17 IF λ is L AND β is S, THEN Cp is S 
R18 IF λ is L AND β is M, THEN Cp is S 
R19 IF λ is L AND β is L, THEN Cp is S 
R20 IF λ is L AND β is VL, THEN Cp is Z 
R21 IF λ is VL AND β is Z, THEN Cp is Z 
R22 IF λ is VL AND β is S, THEN Cp is Z 
R23 IF λ is VL AND β is M, THEN Cp is Z 
R24 IF λ is VL AND β is L, THEN Cp is Z 
R25 IF λ is VL AND β is VL, THEN Cp is Z 
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The fuzzy MF of the knowledge described by (8) is 
implicated as 

pj( ) : ( ) (C )j jR andι ι ι ιµ µ λ β µ→          (9) 

Employing the Mandani max-product inference (obtaining 
new knowledge or rule from the available knowledge or rule) 
operation on Eq. (9) is 

( ) max{ ( ) ( ), ( )}j j pjR and Cι ι ι ιµ µ λ µ β µ=  

max{ ( ( ) ( )), ( )}j j pjprod and Cι ι ιµ λ µ β µ=   

max{ , ( )}pjCι ια µ=                  (10) 

Where the product implication is 

( ) ( ) ( ). ( )j j j jandι ι ι ι ια µ λ µ β µ λ µ β= =       (11) 

The third stage is the aggregation of all rules to produce a 
single output of the fuzzy system as expressed below. 

1 2

1
( ) ( ( ), ( ),..., ( )) ( )

LL
pc Agg R R R Rι

ι
µ µ µ µ µ

=
= =∪   (12) 

The last stage is the defuzzification. The fuzzy numbers 
are mapped into a crisp number using the fuzzy max-product 
combination and centroid of area (COA) defuzzification 
method. 

� 1

1

.
L

pj
d

p L

C

C

ι ι

ι

ι

ι

α

α

=

=

=
∑

∑
               (13) 

4.2.1. Fuzzy Membership Functions Parameters 

Optimization 

Before Cp optimization, the parameters of MFs of fuzzified 
input and output of the MFIS are optimally updated via the 
following training procedure. For d = 1, 2… D is the number 
of paired training data [λ, β: Cp] = [λd, βd: Cp

d] where λd ϵ λFS 
= [0 12], βd ϵ βFS = [00 300] and Cp

d ϵ Cp-FS = [0 0.593] 
where λFS, βFS and Cp-FS respectively represent the subsets of 
crisps λ, β and Cp. These are the aerodynamic limits of a 
typical horizontal axis wind turbine with three blades to 
harvest better energy from the wind. At any iteration number 
k = 1, 2,..., K, substituting (11) into (13), the crisp output is 
expressed as in (14). 

�
1

1

( ) ( )
( ).(1 )(1 )

( ) ( )( ) ( )
;

( ) ( ) ( ) ( )
(1 )(1 )

( ) ( )

0;

j j

j jj j

j j j j

j j

L

pj

d
Lp

k k
C k

k kk j k j
where

C k k k k

k j k j

elsewhere

ι ι
λ βι

ι ιι ι
λ λλ βι

ι ι ι ι
λ β β β

ι ι
λ βι

λ σ β σ
λ σ σσ σ

λ σ β σ β σ σ

σ σ

=

=

 − −
 − −  − ≤

 =  − −  − ≤
 − −





∑

∑
                (14) 

Table 6. MFIS Membership Functions of the Wind Turbine Blade Tip Speed Ratio, Blade Pitch Angle, the Power Conversion Coefficient. 

Linguistic variable 

name 

Equivalent 

fuzzy Set 

The domain of the 

crisps 
Membership functions and their optimum parameters 

Wind Turbine blade tip 
Speed Ratio (�) in rad 

Z =Zero [0 3] 
1

1

0, 0 & 3
( )

1 ,0 3
3

Z

ι
λ

λ ι
λ

λ λ σ
µ λ λ λ σ

 < > =
= 

− ≤ ≤ =


 

S = Small [0 6] 

1
1 1

1

1 , 3( )

0,

S

elsewhere

ι
λ ι ι

λ λιλ λ

λ σ
λ σ σµ λ σ

 −
 − − ≤ == 



 

M = Mean [3 9] 

2
2 2

2

1 , 6( ) 2

0,

M

elsewhere

ι
λ ι ι

λ λιλ λ

λ σ
λ σ σµ λ σ

 −
 − − ≤ == 



 

L = Large [6 12] 

3
3 3

3

1 , 9( ) 3

0,

L

elsewhere

ι
λ ι ι

λ λιλ λ

λ σ
λ σ σµ ζ σ

 −
 − − ≤ == 



 

VL = Very 
Large 

[9 12] 

4
4 4

4

1 , 12( ) 4

0,

VL

elsewhere

ι
λ ι ι

λ λιλ λ

λ σ
λ σ σµ λ σ

 −
 − − ≤ == 



 



 Automation, Control and Intelligent Systems 2021; 9(1): 6-21 13 
 

Linguistic variable 

name 

Equivalent 

fuzzy Set 

The domain of the 

crisps 
Membership functions and their optimum parameters 

Wind Turbine blade pitch 
angle (β) in degree 

Z =Zero [0 7.5] 
1

1

0, 0 & 7.5
( )

1 ,0 7.5
7.5

Z

ι
β

β ι
β

β β σ
µ β β β σ

 < > =
= 

− ≤ ≤ =


 

S = Small [0 15] 

1
1 1

1

1 , 7.5( )

0,

S

elsewhere

ι
β ι ι

β βιβ β

β σ
β σ σµ β σ

 −

 − − ≤ == 



 

M = Mean [7.5 22.5] 

2
2 2

2

1 , 15( ) 2

0,

M

elsewhere

ι
β ι ι

β βιβ β

β σ
β σ σµ β σ

 −

 − − ≤ == 



 

L = Large [15 30] 

3
3 3

3

1 , 22.5( ) 3

0,

L

elsewhere

ι
β ι ι

β βιβ β

β σ
β σ σµ β σ

 −

 − − ≤ == 



 

VL = Very 
Large 

[22.5 30] 

4
4 4

4

1 , 30( ) 4

0,

VL

elsewhere

ι
β ι ι

β βιβ β

β σ
β σ σµ β σ

 −

 − − ≤ == 



 

Wind power to 
mechanical power 
conversion coefficient 
(Cp) 

Z =Zero [0 0.1483] 
1

1

0, 0 & 0.1483
( )

1 ,0 0.1483
0.148

P

P Z
P

P P C

C P P
P C

C C
C C

C

ι

ι

σ
µ

σ

 < > =
= 

− ≤ ≤ =


 

S = Small [0 0.2966] 

1
1 1

1

1 , 0.1483( )

0,

P S

p Cp
p Cp Cp

C P Cp

C
CC

elsewhere

ι
ι ι

ι

σ
σ σµ σ

 −

 − − ≤ == 



 

M = Mean [0.1483 0.4449] 

2
2 2

2

1 , 0.2966( ) 2

0,

P M

p Cp
p Cp Cp

C P Cp

C
CC

elsewhere

ι
ι ι

ι

σ
σ σµ σ

 −

 − − ≤ == 



 

L = Large [0.2966 0.5930] 

3
3 3

3

1 , 0.4449( ) 3

0,

P L

p Cp
p Cp Cp

C P Cp

C
CC

elsewhere

ι
ι ι

ι

σ
σ σµ σ

 −

 − − ≤ == 



 

VL = Very 
Large 

[0.4449 0.5930] 

4
4 4

4

1 , 0.5930( ) 4

0,

PVL

p Cp
p Cp Cp

C P Cp

C
CC

elsewhere

ι
ι ι

ι

σ
σ σµ σ

 −

 − − ≤ == 


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(b) 

 

(c) 

Figure 6. Graphical presentation of Triangular Membership Functions of the Wind Turbine: (a) Blade Tip Speed Ratio, (b) Blade Pitch Angle, (c) Power 
Conversion Coefficient. 

Graphical demonstration of triangular MFs of λ, β, and Cp 
of a wind turbine are presented in Figure 6. These are plotted 
for the triangular relations represented in Table 6. As 
indicated in this figure, the tip speed ratio of value between 
0-12, the pitch angle of value between 0-30 degrees and the 
power conversion coefficient ranges between 0 to 0.593 are 
used. 

They are optimally updated by employing the gradient 
descent method [39, 40] through minimization of the square 
of the norm of error ( dε ) between the expected crisp output 

(�2�,
 of fuzzy logic and the desired value (��,
, which is 
expressed as 

�
2 2

1

1
( )

2

D
dd d

p p
d

C Cε
=

= −∑           (15) 

The parameters of MF are updated as 

�
( 1) ( ) . ( )

d
p

j j j
j

C
k k kι ι ι

ιη ∂Φ + = Φ − Φ
∂Φ

       (16) 

Where η is the learning rate and at an initial iteration η ≤ 
1 and becomes 0 at the end of iteration for fast convergence 

of training [41]. To simplify the computation of training, the 
numerator and denominator of fuzzy logic output crisp 
equation (14) is separately expressed as 

1

.
L

pjC ι ι

ι
γ α

=

=∑  and 
1

L
ι

ι
ξ α

=

=∑          (17) 

Using the chain differential rule, the change in any premise 
parameter is carried as follows. 

�

�

�

( ) ( )

d d
p p

d
j jp

C C

k kC
ι ι

ε γ
γ

∂ ∂∂ ∂=
∂∂Φ ∂Φ∂

         (18) 

Where 

�

�( )
d d d d

p pd
p

C C
C

ε ε∂ = − =
∂

         (19) 

�

1 1

1 1 1

( ) ( )

d

p

L L

j j

C

ι ι ι

ι ι

γ ξ
α µ λ µ β

= =

∂
= = =

∂
∑ ∑

      (20) 

M
F

 C
h

a
ra

c
te

ri
s
ti
c
 V

a
lu

e



 Automation, Control and Intelligent Systems 2021; 9(1): 6-21 15 
 

, ,
( ) ( ) ( ) ( )

j j

T

j pjk k k C kι ι ι ι
λ β

γ γ γ γ
σ σ

 ∂ ∂ ∂ ∂ =
 ∂Φ ∂ ∂ ∂
 

    (21) 

Where 

2

2

( ) ( ) ; ( )
( ( ) )

( )
( ) ( ) ; ( )

( ( ) )

j

j

j

j

j

d
d d

pj

d
d d

pj

j
C k k

k j

k j
C k k

k j

ι

ι

ι ι
λβ ι

λ

ι
λ ι ι

λβ ι
λ

λµ β λ σ
σγ

σ λµ β λ σ
σ


>

∂ = 
∂ − ≤



  

For ( )
j

d kι
ββ σ≤  and ( )d

p pjC C kι≤  

2

2

( ) ( ) ; ( )
( ( ) )

( )
( ) ( ) ; ( )

( ( ) )

j

j

j

j

j

d
d d

pj

d
d d

pj

j
C k k

k j

k j
C k k

k j

ι

ι

ι ι
βλ ι

β

ι
β ι ι

βλ ι
β

βµ λ β σ
σγ

σ βµ λ β σ
σ


>

∂ = 
∂ − ≤



 

For ( )
j

d kι
λλ σ≤ and ( )d

p pjC C kι≤  

( ) ( )
( )

d d

pjC k
ι ιλ βι

γ µ λ µ β∂ =
∂

 

Equation (16) is rewritten as in equation (22) considering 
σλj

ι(k) ≠ 0, σβj
ι(k) ≠ 0 and j ≠ 0. 

The parameters of the first MF (j = 0) of each crisps input 
and output of fuzzy are based on the center parameters of the 
second MFs (j = 1) as depicted in Table 6. To compute 
parameters of the second MFs using Eq. (22), first, inputs 
and corresponding expected output data in the fuzzy set, the 
number of MFs of each input and output and initial value of 
parameters of MFs is correctly specified as indicated in Table 
7. For better accuracy, 50% overlap of MFs at an initial 
iteration of parameters of the second MF with 

1 11 1(0) (0), (0), (0) [3.5,9,0.17]
T T

pCι ι ι ι
λ βσ σ Φ = = 

 

and 0.01η = are randomly selected. Using these values and 

the data in Table 7, optimal 1( )kιΦ  is computed at k-iteration. 

For instance, the first iteration σλ1
ι(1) is computed using (23). 

In the same way, σβ1
ι(1) and Cp1

ι(1) are computed. At k = 2, 
the parameters of the second MF of each crisp are Ф1

ι(2) = 
[σλ1

ι(2), σβ1
ι (2), Cp1

ι(2)] T = [3, 7.5, 0.1483]T.

�

1

( )

( )

( )

( )( 1) ( )

1
( 1) ( )( 1) ( )

( )
( ) ( )( 1) ( )

( )

j

j

j
j j

j j

j

pj

d d
pj p L

j j
pj pj

pj

k

k

C k

kk k

k C Ck k
k

C k C k

C k

ι
λ

ι
β

ι

ιι ι λλ λ

ι ι ι
β β ι

βι ιι ι
ι

ι

σ

σ

γ
σσ σ

γησ σ
σ

µ λ µ β
γ=

 ∂
 

∂    +
     ∂    Φ + = = − −+      ∂    +      ∂
 

∂  

∑
              (22) 

�

1

1

1 1

111

1 1

1

2
25

1

(1 (0) )
(0).

(0)
(1) (0) ( )

( (0))(1 (0) )(1 (0) )

(0) (0)

p

d

P dd d
p p dd

C

C

C C

ι
βι

ι
βι ι

λ λ ιιι λβ
ι ι

β λι

β σ

σ λσ σ η
σλ σβ σ

σ σ=

− −

= + −
− −− −

∑
              (23)

 

Figure 7. Error Convergence using Gradient DescentTraining Method. 

As seen in Figure 7, the convergence is reached within 
the first two iterations under the application of the mentioned 
learning technique for MFs parameters optimization. The 
validation of the training result is evaluated by using the root 
mean squared error of the output in (13); in which the 

minimum training error of the membership function by the 
aforementioned method is 0.001485 as in Figure 7. 

At any k-iteration, the parameters of the next MFs (j = 2, 3, 
4) are procedurally computed as 

1( ) . ( )j k j kι ιΦ = Φ , that is 

2 1

2 12

2 1

( ) ( )

( ) 2( ) ( )

( ) ( )p p

k k

k k k

C k C k

ι ι
λ λ

ι ι ι
β β

ι ι

σ σ

σ σ

   
   
   Φ = =
   
   
   

 

2 1

2 13

2 1

( ) ( )

( ) 3( ) ( )

( ) ( )p p

k k

k k k

C k C k

ι ι
λ λ

ι ι ι
β β

ι ι

σ σ

σ σ

   
   
   Φ = =
   
   
   
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4 1

4 14

4 1

( ) ( )

( ) 4( ) ( )

( ) ( )p p

k k

k k k

C k C k

ι ι
λ λ

ι ι ι
β β

ι ι

σ σ

σ σ

   
   
   Φ = =
   
   
   

          (24) 

Table 7. Training data to iteratively update parameters of the second MFs (j 
= 1) of λ, β and Cp. 

dλ  
dβ  

d
pC  � d

pC  � d d
p pC C−  

0 0 0 0 0 
0.2 0.5 0.0099 0.0097 -0.0002 
0.4 1.0 0.0198 0.0150 -0.0018 
0.6 1.5 0.0297 0.0270 -0.0027 
0.8 2.0 0.0396 0.0390 -0.0006 
1.0 2.5 0.0494 0.0492 -0.0002 
1.2 3.0 0.0593 0.0545 -0.0048 
1.4 3.5 0.0692 0.0692 0 
1.6 4.0 0.0791 0.0792 0.0001 
1.8 4.5 0.0890 0.0891 0.0001 
2.0 5.0 0.0989 0.0987 -0.0002 
2.2 5.5 0.1088 0.1085 -0.0003 
2.4 6.0 0.1187 0.1188 0.0001 
2.6 6.5 0.1286 0.1289 0.0003 
2.8 7.0 0.1385 0.1384 -0.0001 
3.0 7.5 0.1484 0.1485 1E-04 
3.2 8.0 0.1582 0.1582 0 
3.4 8.5 0.1681 0.1681 0 
3.6 9.0 0.1780 0.178 0 
3.8 9.5 0.1879 0.1875 -0.0004 
4.0 10.0 0.1978 0.1977 -0.0001 
4.2 10.5 0.2077 0.2074 -0.0003 
4.4 11.0 0.2176 0.2170 -0.0006 
4.6 11.5 0.2275 0.2278 0.0003 
4.8 12.0 0.2374 0.2377 0.0003 
5. 2.5 0.2473 0.2474 0.0001 
5.2 13.0 0.2571 0.2572 1E-04 
5.4 13.5 0.2670 0.2671 1E-04 
5.6 14.0 0.2769 0.277 0.0001 
5.8 14.5 0.2868 0.2862 -0.0006 
6.0 15.0 0.2966 0.2968 0.0002 

4.2.2. Computational Implementation of Cp Optimization 

There are a total of fifteen (i.e. 3x5) discrete fuzzy sets of 
the tip speed ratio, the pitch angle, and the power conversion 
coefficient which are analytically computed from the 
optimally generated MFs in Table 6. Using these MFs the 
discrete fuzzy sets of the inputs–output relations are made 
ready to employ MFIS as depicted in equations (25) – (27). 
The discrete fuzzy sets defined over the universe of discourse 
of the blade tip speed ratio (�) are 

( ) {(1,0), (0.667,1), (0.333,2), (0,3)}

(0,0), (0.333,1), (0.667,2),
( )

(1,3), (0.667,4), (0.333,5), (0,6)

(0,3), (0.333,4), (0.667,5), (1,6),
( )

(0.91,6.27), (0.667,7), (0.333,8), (0,9)

(
( )

Z

S

M

L

λ

λ

λ

λ

µ λ

µ λ

µ λ

µ λ

=

 
=  
 

 
=  
 

=
0,6), (0.09,6.27), (0.333,7), (0.667,8),

(1,9), (0.667,10), (0.333,11), (0,12)

( ) {(0,9), (0.333,10), (0.667,11), (1,12)}
VLλµ λ









    
  
 =

  (25) 

The discrete fuzzy sets defined over the universe of 

discourse of the blade pitch angle (β) are 

(1,0), (0.867,1), (0.733, 2), (0.6,3), (0.467,4),
( )

(0.333,5), (0.2,6), (0.067,7), (0,7.5)

(0,0), (0.133,1), (0.267,2), (0.4,3), (0.533,4),

(0.667,5), (0.8,6), (0.933,7), (1,7.5), (0.933,8),
( )

(0.8,9), (

Z

S

β

β

µ β

µ β

 =  
 

=
0.667,10), (0.533,11), (0.4,12),

(0.267,13), (0.133,14), (0,15)

(0,7.5), (0.067,8), (0.2,9), (0.333,10), (0.467,11),

(0.6,12), (0.733,13), (0.867,14), (1,15),
( )

(0.867,16), (0.733,17), (0.6,18), (0.4Mβµ β

 
 
 
 
 
 

=
67,19),

(0.333, 20), (0.2, 21), (0.067, 22), (0, 22.5)

(0,15), (0.133,16), (0.267,17), (0.4,18), (0.533,19),

(0.667,20), (0.8, 21), (0.933, 22), (1,22.5),
( )

(0.933, 23), (0.8,24), (0.667,25), (0.533,26),

(0

Lβµ β

 
 
 
 
 
 

=

.4,27), (0.267,28), (0.133,29), (0,30)

(0, 22.5), (0.067,23), (0.2, 24),

( ) (0.333,25), (0.467, 26), (0.6, 27),

(0.733,28), (0.867, 29), (1,30)
VLβµ β




















  
  

 
 
 
  


 
  =  
  

 (26) 

The discrete fuzzy sets defined over the universe of 
discourse of the power conversion coefficient (Cp) are 

( ) {(1,0), (0.662,0.05), (0.324,0.1), (0,0.148)}

(0,0), (0.338,0.05),

( ) (0.676,0.1), (1,0.148), (0.986,0.15),

(0.649,0.2), (0.311,0.25), (0,0.297)

(0,0.148), (0.0.14,0.15), (0.351,0.

( )

P Z

P S

P M

C P

C p

C p

C

C

C

µ

µ

µ

=

 
 =  
 



=
2),

(0.689,0.25), (1,0.297), (0.973,0.3),

(0.635,0.35), (0.297,0.4), (0,0.445)

(0,0.297), (0.037,0.3), (0.365,0.35),

( ) (0.703,0.4), (1,0.445), (0.959,0.45),

(0.622,0.5), (0.284,0.55), (0,0.593)
P L

C pCµ

 
 
 
 




= 



(0,0.445), (0.041,0.45),
( )

(0.378,0.5), (0.716,0.55), (1,0.593)PVL
C PCµ















 
 
 
 


   =  
  

  (27) 

Using the discrete fuzzy sets, computation of the optimum 
power conversion coefficient (Cp) for any size of a wind 
turbine is carried here. The fuzzy logic crisp output Cp should 
be optimal; hence the power capturing by wind turbine from 
the wind would be optimal even for lower wind speed. As 
depicted by (2), the tip speed ratio is related to both the wind 
speed and turbine rotor speed. As wind speed increases the 
rotor speed too. The rotor speed can be maintained constant 
by pitch regulator and hence tip speed ratio too. To 
implement the MFIS optimization tool for Cp, three samples 
are considered. These are in a lower wind speed region 
(partial load operation), around the rated wind speed, and in a 
higher wind speed region (full load operation) cases. For the 
first case, the rotor speed could be controlled to maintain � 
at the optimal value of 6.268 and the β is maintained at 00. 
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These have fuzzy rules in their domains [3 9] and [00 7.50] 
respectively. That is, from Table 5 and Table 6, the 
membership functions, and the fuzzy rules that have the crisp 
in the specified domain are defined by R11 and R12 of the 
MFIS rules. The computation of Cp is depicted in the 
following steps. 

Step 1. The individual rule-based implication that is the 
Mamdani fuzzy min implication yields a resultant output 
fuzzy set for each activated rules are 

R11: IF � is 
Mλµ  AND β is

Zβµ , THEN Cp is PVL
Cµ  

R12: IF � is 
Mλµ  AND β is

Sβµ , THEN Cp is P L
Cµ  (28) 

The activation degrees of membership of the antecedent 
parts of these rules at the given input crisps are computed 
using the fuzzy sets depicted in (25) and (26). 

11

12

0 0
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M S

R
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

= = =
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Step 2. The inferred fuzzy sets are computed by associating 
the result in (29) with the consequent in (28) and the fuzzy 
sets in (27) by employing Mamdani fuzzy product inference 
for i = 1, 2,…, 5, and j = 1, 2,…, 9 as shown in (30). 
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                        (30) 

Step 3. Aggregation of the two fuzzy sets in (30) is computed to produce single output fuzzy set by Max- operator of fuzzy 
logic and the result is 
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                          (31) 

Step 4. The crisp output value of Cp is computed from (31) 
using the center of the area (COA) defuzzification type as in 
(32). 
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(0*0.297) (0*0.3) (0*0.35)

(0*0.4) (0*0.445) (0.0127*0.45)

(0.344*0.5) (0.6516*0.55) (0.91*0.593)

(0 0 0 0 0 0.0127 0.344 0.6516 0.91)

0.5608

+ + 
 + + + 
 + + + =

+ + + + + + + +
=

 

The second case is when the wind speed is around the 
rated value (13 m/s), the blade pitch angle should be 
increased by a small value to regulate rotor output power to 
the rated value and secures the wind turbine. Consider for β = 
80 and � = 6 the Cp can be computed by MFIS as follows. 
These crisp inputs have common fuzzy rules in their [3 9] 
and [7.50 22.50] respective domains. From Table 5 and Table 
6, the membership functions and the fuzzy rules that have the 
crisp in the specified domain are defined by R12 and R13 of 
the MFIS rules. By repeating the procedure in the first case, 
the computed Cp is 0.4360. 

The third case is when the wind speed is greater than the 
rated value, the blade pitch angle should be increased by 
moderate value and the tip speed ratio could be smaller to 
regulate the rotor output power to the rated value. 
Considering β = 250 and � = 2, Cp can be computed by 
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MFIS as follows. These crisp inputs have fuzzy rules in [0 3] 
and [22.50 300] respective domains. From Table 5 and Table 6, 
the membership functions and fuzzy rules for these crisp 
inputs in the specified domain are defined by R4 and R5 of 
the MFIS rules. Following the steps as in the first case, the 
computed Cp is 0.0329. 

5. Results and Discussion 

 

(a) 

 

(b) 

Figure 8. Comparison of Wind Turbine’s (a) Power Conversion Coefficient 
(b) Output Power of 1.5 MW SE7715. 

This study showed 0.5608 is the optimal Cp and is greater 
than the values which are presented under the literature 
review section. The power conversion coefficient was 
computed repeatedly at different values of the tip speed ratio 
and blade pitch angle. The result of CP is plotted in 
comparison with SE7715 wind turbine factory experimental 
test results as seen in Figure 8 (a). This result indicated the 
optimized Cp is equal to 0.5608 at 8 m/s, but the maximum 
Cp from the factory experimental test result of the SE7715 

wind turbine is 0.4804 at the same wind speed. This is a 
16.74% improvement in the power conversion coefficient of 
the SE7715 wind turbine. Also, the MFIS optimized Cp is 
0.4360 at 13 m/s wind speed. 

The corresponding Cp from the factory test result of the 
SE7715 turbine is 0.2537. Figure 8 (a) also showed, at a high 
wind speed of 22.5 m/s for instance, Cp is reduced to 0.0329 
to secure the turbine. These results are used to compute the 
corresponding output power of the SANY SE7715 wind 
turbine. Using the specifications of this wind turbine in Table 
2 and employing (1), the output power is 175.24 kW at 5 m/s 
wind speed and computed Cp of 0.5101. However, from the 
experimental data in Figure 8 (b) for the same wind turbine, 
the output is 151.67 kW at 5 m/s wind speed. The 
improvement in the output power is 23.57 kW. It is equal to a 
15.54% improvement in output power. When the wind speed 
is near the rated value, for instance, the optimal computed Cp 
is 0.542 at 10.5 m/s and hence the rotor output power of the 
same turbine is 1.725 MW. But the rated power is obtained at 
12 m/s as in Figure 8 (b). This shows the developed 
optimization method provide rated power before the rated 
wind speed was reached, indicating that more power can be 
harvested at a lower wind speed. For some wind speeds 
below the rated value, the result for power harvesting is 
present in Table 8 for comparison. Figure 8 (b) shows the 
simulation of output power as a function of wind speed that 
was computed using the MFIS in comparison with the 
factory experimental test data. 

At higher wind speed, the simulation result of optimized 
power by MFIS is beyond the turbine rating. Therefore, the 
output power regulation to the rated value is a must. This is 
achieved by the pitch actuator control system that was 
presented in section 4. For higher wind speed, the pitch 
controller generates large pitch command (βd), and hereafter 
the pitch actuator acted on the blade to regulate rotor output 
power to the rated value. The regulated output power at the 
corresponding pitch angle and the control variables (power 
error and wind speed) are presented in Figure 9. 

Figure 9 portrays the simulation result of (a) the wind 
speed in the range of cut-in and cut-out speeds of the SE7715 
wind turbine, (b) the optimized and regulated output power 
of the SE7715 wind turbine, (c) the power error between the 
SE7715 wind turbine output power and the reference power, 
and (d) blade pitch angle. Figure 9 (a) and (c) are the inputs 
to the fuzzy logic-based controller of the blade pitch actuator. 
As indicated in the figure at 18 sec the wind speed is 10.5 
m/s, the output power is 1.5 MW that is attained before the 
rated wind speed is reached showing improvement in 
harvested power. The power error is 98 W and the pitch 
angle is 00. When the wind speed is increased beyond 10.5 
m/s, the blade pitch angle regulates the turbine rotor output 
power to the rated value. For instance, at 22.5 m/s wind 
speed, the computed Cp is 0.0479 and at 23.5 m/s wind speed 
Cp is 0.0421 and hence the output power is 1.5 MW and 
1.501 MW respectively. 
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Figure 9. (a) Wind speed, (b) SE7715 WT Rotor Output Power Error, (c) 
Blade Pitch Angle, and (d) Optimized and Regulated Output Power of 
SE7715 Wind Turbine. 

 

(a) 

 

(b) 

Figure 10. Comparison of MFIS optimized simulation results with Factory 
Experimental Test Results (a) Power Conversion Coefficient, (b) output 
power of 1.5 MW of the SE7715 wind turbine. 

Table8. Comparison of MFIS Optimized Power with Output Power SE7715 and Related Recent Work. 

Wind speed (m/s) 
RBFNN control based 

MPPT [17] (kW) 

Factor Test Sample of 

SE7715 (kW) 

Proposed MFIS based 

optimization (kW) 

Improved power (kW) compared to 

RBFNN [17] Factor Test Sample 

6 307.55 268.6 346.22 38.67 37.78 

8 729.02 651.45 785.35 56.34 133.9 

10 1423.86 1199.04 1492.65 68.792 293.61 

 
The MFIS optimized power conversion coefficient wind 

turbine is presented in Figure 10 (a). The MFIS optimized Cp 
is maintained constant over the wind speed range of 5–10 m/s 
and hence turbine can have better-regulated rotor speed, 
whereas the experimental result is constant for the wind 
speed in the ranges of 5–9 m/s. The MFIS optimized and 
pitch regulated rotor output power in Figure 9 (b) is replotted 
in Figure 10 (b) for comparison with the factory experimental 
result. Figure 10 (b) confirmed that the MFIS optimized 
power is better than the factory experimental result of the 
SE7715 wind turbine. For instance, at 3.5 m/s wind speed, 

the MFIS optimized power is 50.8 kW whereas the 
experimental result is 40.18 kW. That is, with optimized Cp, 
the turbine can harvest power at a wind speed lower than the 
cut-in speed (3.5 m/s). This showed the proposed MFIS 
optimization technique is well suitable for wind turbine 
energy harvesting capacity improvement, and it provided 
new and interesting results. In summary, the result of the 
proposed MFIS technique is compared to the results of the 
most recent researches as shown in Table 8. The proposed 
MFIS technique for the optimization of wind turbine output 
power is superior. 
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6. Conclusion 

The method used for the optimization of the energy 
harvesting ability of wind turbines is developed by using the 
MFIS fuzzy logic method. Only one parameter (either center 
or width of MF of fuzzy logic) is optimally updated and 
optimization of Cp of a wind turbine is carried out to maximize 
energy harvesting from the wind. Cp is enhanced by 
employing the MFIS. The MFIS optimization technique in 
combination with the fuzzy logic-based controller of the wind 
turbine blade pitch drive system achieved Cp to improve 
significantly compared to results of recent researches. 
Comparing the proposed optimization method result with the 
factory experimental test result of the SE7715 wind turbine, a 
16.74% improvement in the energy harvesting capacity is 
attained. These are the novel elements of the proposed scheme. 
The wind turbine that operates with optimal power conversion 
coefficient can get increased turbine’s speed regulation range, 
achieves optimal Cp before it attains rated power, offers 
improved power curve, and hence increased power generation 
capacity, and reduces the range of cut-in and rated wind 
speeds. Practically, a programmable logic-based proportional 
integral derivative controller is employed in the SE7715 wind 
turbine. A comparative study between the proposed MFIS 
optimization method with related recent researches indicates 
the MFIS optimization improved the energy harvesting 
capacity of the wind turbine. Practical implementation of 
MFIS strategy with the developed membership functions 
tuning optimization method is recommended to enhance the 
performance of wind turbines. 
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